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Marra6, Alexandra Veledina7,8, Valery Suleimanov9, Nicole
Rodriguez Cavero3, James Steiner10, Jiri Svoboda2, Andrea
Marinucci11, Stefano Bianchi6, Michela Negro12,13,14, Giorgio

Matt6, Francesco Tombesi15,16,17, Juri Poutanen7, Adam
Ingram18, Roberto Taverna19, Andrew West3, Vladimir

Karas2, Francesco Ursini6, Paolo Soffitta1, Fiamma
Capitanio1, Domenico Viscolo20,21, Alberto

Manfreda22, Fabio Muleri1, Maxime Parra23,6, Banafsheh
Beheshtipour3, Sohee Chun3, Niccolò Cibrario24,25, Niccolò Di
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Abstract

Large, energy-dependent X-ray polarisation is observed in 4U 1630–
47, a black hole in an X-ray binary, in the high-soft emission state.
In this state, X-ray emission is believed to be dominated by a ther-
mal, geometrically thin, optically thick accretion disc. However, the
observations with the Imaging X-ray Polarimetry Explorer (IXPE)
reveal an unexpectedly high polarisation degree, rising from 6% at
2 keV to 10% at 8 keV, which cannot be reconciled with stan-
dard models of thin accretion discs. We argue that an accretion
disc with an only partially ionised atmosphere flowing away from
the disc at mildly relativistic velocities can explain the observations.

Keywords: polarisation, black holes, accretion disc, X-ray binaries

1 Introduction

Black hole X-ray binaries (BHXRBs) consist of a black hole (BH) accreting
matter from a companion star. These systems provide opportunities to inves-
tigate the inner workings of accretion flows, including their thermal stability
and the mechanisms of angular momentum transport, as well as the formation
of relativistic outflows, winds and jets [1–3].
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The X-ray polarisation observations (in the 2–8 keV range) conducted with
the Imaging X-ray Polarimetry Explorer (IXPE, [4]), a NASA mission in col-
laboration with the Italian Space Agency (ASI), launched on December 9th
2021, are providing us with new significant insights into BHXRBs. In partic-
ular, the 4% polarisation observed for the archetypal BHXRB Cyg X-1 [5],
parallel to the radio jet, constrained the geometry of hot corona, responsible for
the power-law emission in the hard state, to be extended perpendicular to the
jet direction (see [6, 7] for detailed descriptions of the different X-ray states).
On the other hand, the much higher polarisation degree (∼ 20%) observed
for the black hole candidate Cyg X-3 in the hard state [8], with polarisation
direction perpendicular to that of the discrete radio blobs, can be explained
if radiation emitted by a highly luminous (but not directly visible) source is
reflected off the funnel walls of obscuring matter.

In this paper we present results from spectro-polarimetric observations
of the accreting black hole 4U 1630–47 with IXPE, accompanied by spectral
observations with the NICER and NuSTAR missions. Whereas Cyg X-1 and
Cyg X-3 were observed in the hard state, 4U 1630–47 was observed in the
high-soft state. In this state, the emission is believed to originate from a geo-
metrically thin, optically thick accretion disc (h/r � 1 for the scale height h
of the disc at radius r) as multi-temperature black-body (BB) emission [9–12].
However, slim (h/r . 0.4) or thick discs (0.4 < h/r . 1) have been predicted
to occur at high accretion rates [13]. The IXPE observations of 4U 1630–47
now allow us to weigh in on this distinction based on the additional information
encoded in the energy resolved polarisation degree and polarisation direction.

4U 1630–47 is a transient low-mass X-ray binary (LMXB) system, initially
discovered by the Uhuru satellite in 1969 [14, 15], that subsequently exhibited
recurrent outbursts with a spacing of approximately 2–3 years [16, 17]. An
accurate determination of the properties of the binary system has not been
possible as yet due to the high line-of-sight (LOS) extinction [18, 19]. The
mass of the black hole, distance to the binary system, and the inclination
(angle between the binary axis and the LOS) are thus poorly constrained.
Based on the dust scattering halo around the source, the distance is estimated
to be between 4.7 to 11.5 kpc [20]. The inclination of the binary is believed
to be ∼ 65◦, explaining the observations of X-ray dips but the absence of
eclipses [16, 21] and the detection of Doppler shifted lines emitted by a jet [22].
The source shows evidence for a wind, believed to be equatorial [22–24]. The
thermal component usually dominates the spectrum during outbursts [19, 25],
making it an ideal candidate for investigating the properties of the disc.

We present the observational results in Sect. 2 and discuss the implications
for the geometry of the accretion disc and the properties of the accretion disc
photosphere in Sect. 3.



The IXPE view of 4U 1630–47 7

Fig. 1 Measured polarisation degree and angle of 4U 1630–47 as a function of the energy.
The analysis is carried out using the publicly available version of ixpeobssim [26]. The
shaded region and ellipses shows the 68%, 95%, and 99.7% confidence interval results.

2 Observational Results

Daily monitoring of 4U 1630–47 by the Gas Slit Camera (GSC) onboard Mon-
itor of All-sky X-ray Image (MAXI, [27]) showed an increase in the count
rate, suggesting an outburst from the source in 2022 July [28] (Figure M1).
During this outburst, IXPE performed a target of opportunity (ToO) observa-
tion starting on 2022 August 23 and ending on 2022 September 2, for a total
exposure of approximately 460 ks, along with continuous spectral monitoring
from the Neutron Star Interior Composition Explorer (NICER, [29]) and the
Nuclear Spectroscopic Telescope Array (NuSTAR, [30]).

Linear polarisation was detected with a statistical confidence of around
50σ (Figure 1). The 2–8 keV polarisation degree (PD) and position angle (PA),
measured east of North, are 8.32 ± 0.17% and 17.8◦ ± 0.6◦, respectively (the
uncertainties are reported at 68% confidence level). Whereas PD increases
from approximately 6% at 2 keV to 10% at 8 keV, the polarisation direction
stays constant with energy within the statistical accuracy of the measurements
(bottom right panel on Figure 2). The radio jet from this source has never been
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resolved, leaving us without a jet direction to compare the X-ray polarisation
to.

The NICER data reveal a featureless power density spectrum with frac-
tional variability of less than 5% Root Mean Square (RMS) and a high disc
temperature of ∼ 1.4 keV, showing that the source was in the high-soft state.
The NICER energy spectra exhibit blue-shifted absorption lines, with outflow
velocities ≈ 0.003 c (with c the speed of light), suggesting the existence of
equatorial disc wind outflows.

We fitted the combined, quasi-simultaneous NICER and NuSTAR data
with a thin disc model. The best fit value for the BH mass is very large,
60M� (Methods, Table M1), already suggesting a problem with this model.
The combined NICER and NuSTAR energy spectra reveal a weak power law
component, contributing approximately 2-3% of the energy flux in the IXPE
2–8 keV energy range. The photon index was highly variable, exhibiting values
between 2.8 and 4.8 (see Methods) consistent with the soft state of BHXRBs
[6, 31]. We do not find evidence for a broad reflection feature, as reported in
[23, 32].

3 Implications for the accretion disc geometry
and accretion disc photosphere

The high and energy-dependent PD of 4U 1630−47, increasing from 6% at
2 keV to 10% at 8 keV, cannot be explained in the framework of the stan-
dard thin disc model. In this model, the polarisation of the thermal emission
emerging from the disc should roughly follow Chandrasekhar’s classical result
for a semi-infinite free electron scattering atmosphere [33]. Polarisation degree
of emission reaching the observer tends to be significantly lower than Chan-
drasekhar’s results, owing to two effects. As the polarisation vector is parallel
transported as the photons propagate through curved space-time, the polar-
isation direction projected onto the sky changes. The competing polarisation
directions of the emission from different parts of the disc partially cancel
[34, 35]. Furthermore, emission following the space-time curvature can return
to the disc and scatter off it. The polarisation of the direct and reflected
returning emission again partially cancel [36, 37]. The Chandrasekhar formula
can produce X-rays with PD & 6% in the disc rest-frame for viewing angles
exceeding 80◦ (Methods, Figure M4). However, de-polarisation by relativistic
effects means that the standard model cannot reproduce the observed PD for
any inclination angle (left panel on Figure 2). Moreover, the observed increase
of PD with energy cannot be reproduced in the disc rest-frame, since electron
scattering is energy independent.

Considering instead scattering from free and bound electrons in a partially-
ionised plasma increases the predicted PD in the disc rest-frame from the pure
electron scattering case (Methods, Figure M4), and also in principle enables
an increase of PD with energy (Methods, Figure M5). This is because the
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absorption processes lead to a higher fraction of the escaping photons trav-
elling perpendicular to the disc plane, plus these photons scatter on average
fewer times [38]. Radiative transfer calculations of a plane-parallel, partially-
ionised slab in photo-ionisation equilibrium [38, 39], extensively discussed in
the Methods, predict a PD in the disc rest-frame increasing from ∼ 6% at
2 keV to ∼ 10% at 8 keV (as is observed by IXPE), as long as the slab is
highly ionised and viewed from an angle of ∼ 84◦. The former condition is
met for black-body temperatures k TBB & 0.5 keV, high slab optical thickness,
τ , of up to 10, and for a wide range of slab densities, n(H) ∼ 1012−20 cm−3

(Figs. M5–M7 in Methods). In this scenario, the polarization angle should be
parallel with the disc. However, verifying this is currently impossible due to
the lack of constraints on the orientation of the radio jet. Once again general
relativistic effects reduce the predicted observed PD in the IXPE energy band
to well below the observed values (Figure M9, and Figure M11, right panel).
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Fig. 2 Comparison of the observed (purple points with 68% confidence level error bars) and
modelled 4U 1630−47 polarisation properties (different lines). The standard Novikov-Thorne
geometrically thin accretion disc model with emission and reflection according to Chan-
drasekhar’s pure scattering atmosphere model significantly under-predict the PDs (left). The
results of thin disc models with an outflowing partially ionised photosphere can explain the
data for low spins (a = 0 or 0.5) and i = 70◦ or 75◦ inclinations (top right and bottom
right). All models shown here assume optical thickness around 7. The models of the centre
and lower panels assume an outflow velocity of v ∼ 0.5 c.

The relativistic corrections are significantly altered when we allow for rela-
tivistic vertical motion of the particles in an outflowing disc atmosphere. The
model predicts higher PDs as the photons reaching the observers were emitted
under larger inclinations with larger PDs. These photons reach the observer
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owing to relativistic beaming effects. When we include this extra effect into the
partially-ionised slab model, we can explain the observed PD and PA (right
panels of Figure 2) with the combination of a low black hole spin (a . 0.5),
and a highly-ionised atmosphere with large optical depth (τ ∼ 7) outflowing
perpendicular to the accretion disc with a velocity v ∼ 0.5 c. The observed PD
variability (see Figure M3 in Methods) could then be explained by changes in
the optical depth or due to varying outflow velocity of such an atmosphere.
In this picture, the absorption lines imprinted on the spectrum with blue shift
velocity v ∼ 0.003 c originate from an equatorial wind located further from
the disc than the rapidly outflowing atmosphere. It is plausible that this is
the same material; i.e. the outflow is initially rapid and dense at the disc sur-
face before spreading and slowing down at larger distances, like in the case of
Magneto-hydrodynamic (MHD) winds [40–44]. Such MHD wind models have
been previously used to explain the blue-shifted absorption lines in this source
[45].

The modelling described in the Methods sections shows that geometrically
thicker discs, such as the slim disc [13] or recently very popular puffy discs
[46], can lead to increased PDs, and to PDs increasing with energy. However,
for the considered disc geometries, even our most optimistic fine tuning of the
model parameters (black hole spin, inclination of the observer, disc thickness)
cannot fully reproduce the observed high PDs. We cannot exclude here that
the high PDs may be explained with other disc geometries that increase the
fraction of scattered X-rays even more.

The high inclination could also be explained by a scenario where the inner
accretion flow is more inclined than the binary system, like in the case of a
wrapped disk. If the BH spin axis is not aligned with the binary orbital axis,
the gravitational effects can result in the inner accretion flow becoming aligned
perpendicular to the BH spin axis, potentially leading to a greater inclination
of the inner disk [47].

During the writing of this work, two other groups independently analysed
the same IXPE data sets [48, 49], obtaining observational results consistent
with those presented in this work. The authors posit that the high polarisa-
tion degree can be explained by scattering off a wind. We find that reflection
off a highly ionised wind via Thomson scatterings leads to rather constant
PDs [8, 50], contrary to what is observed. For the reflected flux to make a sig-
nificant contribution to the total spectrum, the solid angle subtended by the
wind on the X-ray source needs to be greater. Reflection off a distant wind
(rather than off the hot inner portion of the accretion disc) should further-
more give rise to emission lines [37], which we do not see in the NICER and
NuSTAR energy spectra. Further, using our NuSTAR data we constrain the
Comptonised power-law, and hence confirm its negligible contribution in the
2-8 keV band.

We conclude that the new observational diagnostics provided by IXPE, PD
and PA of the X-ray radiation, imply significant deviations from the standard
thin disc model. We show that a thin disc with an outflowing atmosphere and
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with significant absorption effects can explain the observations. Additional
observations of the source in the same emission state at different flux levels
and in different emission states will constrain the accretion disc geometry and
properties even further.
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Methods

Data sets and data reduction

IXPE: The Imaging X-ray Polarimetry Explorer (IXPE) consists of three inde-
pendent telescopes, each made up of a Mirror Module Assembly (MMA) and a
detector unit (DU) [4, 51–53]. IXPE observed 4U 1630–47, from 2022 August
23 23:14 to 2022 September 02 18:54, for a total effective exposure of approxi-
mately 463 ks. The analysis of the IXPE data is performed using ixpeobssim

software, version 28.4.0 [26], which is based on level-2 processed data. For our
analysis, we used the combined data sample collected by the three identical
detector units, with appropriate rotation to align them with the same refer-
ence system in sky coordinates. We utilised SAOImage DS9 software [54] for
the source and background region selection process. The source region was
chosen as a circular area with a radius of 1.0′, centred at the region of maxi-
mum intensity within the field of view, consistent with the source location. The
background region was defined as a concentric annulus with an inner radius of
2.5′ and an outer radius of 4.3′. The ixpeobssim routine xpselect was used
to create the source and background event files.

The polarisation degree and angle were computed using the xpbin routine
of ixpeobssim, using the flag --algorithm PCUBE. Version 11 of the IXPE
response functions was used to process the data. This approach enabled the
calculation of the polarisation properties in a model-independent manner. The
xpbin routine allows us to perform a background subtraction from source and
background files: note that the source-emission leakage into the background
region does not affect the final source polarisation estimation significantly.
Then we have generated the OGIP standard FITS files of polarisation degree
and angle together with the unit response files with the flx2xsp tool from
the HEASOFT package [55] so that we can directly feed them to XSPEC in order
to perform polarimetric fits [56]. The xpselect and xpbin routines were also
used to generate event files for the analysis of variability over time.

NICER: NICER uses 52 silicon drift detectors (SDDs), each with a paired
single-scattering concentrator optic and mutually aligned on the sky [57].
NICER is sensitive in the 0.2–12 keV range, offering < 100 ns time resolution,
and has a peak effective area ∼ 2000 cm2. NICER carried out 11 observa-
tions of 4U 1630–47 during the IXPE campaign, from 2022 August 22 to 2022
September 1. A total of 64 GTIs have been used for our science analysis, for
an aggregate time of ≈ 27 ks and a total of > 11 million X-ray counts.

NICER data were reduced and processed with the version 9 of the NICER
data analysis software NICERDAS. Data were filtered following standard prac-
tices, but allowing data from South Atlantic Anomaly (SAA) passages. For
each GTI, data from detectors 14, 34, and 54 were excised owing to calibra-
tion problems among this subset. Additionally, the average rates of overshoot,
undershoot, and X-ray events per GTI were assessed, and any detector which
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> 15 median absolute deviation (MAD) was excluded for that GTI. All expo-
sure times were corrected for the detector dead time (< 1%). The background
spectra were computed using the 3C 50 background model [58]. Only GTIs
of length t > 60 s and for which the background rate was 100 times below
the source rate were used for the analysis. A total of 27 ks of simultaneous
NICER observations were finally available for the analysis. The spectral and
lightcurve files were extracted from the event files using XSELECT version 2.5b
and the response files were generated using nicerarf and nicerrmf.

NUSTAR: 4U 1630–47 was observed three times by NuSTAR during the
IXPE pointing (on 2022 August 25 and 29, and on 2022 September 1) using the
two co-aligned X-ray telescopes, each with a corresponding Focal Plane Module
A (FPMA) and B (FPMB) [30]. The total elapsed times of the three snapshots
are 38.3 ks, 31.6 ks and 32.5 ks, respectively. The Level 1 data products were
processed with the NuSTAR Data Analysis Software (NuSTARDAS) package (v.
2.1.2). Cleaned event files (level 2 data products) were produced and calibrated
using standard filtering criteria with the nupipeline task and the NuSTAR
calibration files 20220510 available in the CALDB database. Extraction radii
for the source and background spectra were 60′′. The spectra and lightcurves
were then generated by the nuproducts routine of the NuSTARDAS package.
FPMA and FPMB spectra were binned following the procedure described in
[59] and, in order to have a signal to noise ratio (SNR) greater than 3 in each
spectral channel, the same energy binning was applied to the FPMB spectra.
The net observing times for the FPMA and the FPMB data sets are 16.3
ks/16.6 ks, 13.2 ks/13.4 ks and 14.8 ks/15.0 ks for the three sets of NuSTAR
data, respectively.

Detailed results from IXPE, NICER, and NuSTAR

Light curves: The top panel of Figure M1 shows the X-ray activity of the
source between MJD 59700 (2022 May 1) and MHD 59900 (2022 November 17)
monitored by MAXI mission. The 200-day interval includes the time period
of the IXPE observation campaign. The source was detected in the high-soft
state. The bottom panel shows the IXPE, NICER, and NuSTAR 2–8 keV, 1–
10 keV, and 3–79 keV fluxes, respectively. The fluxes varied by ∼10% below
10 keV and by 15-20% above 10 keV. The source flux was thus rather stable
during the campaign.

Spectral fit with NICER and NuSTAR

As 4U 1630−47 is highly variable (see Figure M1) we fitted the NICER and
NuSTAR energy spectra selecting quasi-simultaneous data sets. From the set
of NICER observations, we used data with the observational IDs 5501010104,
5501010108 and 5501010111 that match the same periods covered by NuS-
TAR observations with the observational IDs 80802313002, 80802313004 and
80802313006, respectively. We further denote these 3 observations as Obs
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Fig. M1 Top: MAXI 2–10 keV light curves in one-day bins. The shaded red region indicates
the time period of the IXPE observation campaign. Bottom: IXPE, NICER and NuSTAR
lightcurves in the 2–8 keV, 0.1–10 keV and 3–79 keV bands, respectively, during the IXPE
campaign. The IXPE light curve gives the combined count rates of all three Detector Units
(DUs), whereas for NuSTAR only the light curve obtained from Focal Plane Module A is
shown.

1, Obs 2 and Obs 3, respectively. For the spectral analysis, we used only
NICER data with low background radiation (we avoided here data during SAA
passage).

We employed a model consisting of thermal accretion-disc emission
accounting for relativistic effects (kerrbb, [60]), the Comptonised emission
(nthComp, [61, 62]), ionised absorber modelled with CLOUDY (cloudy, [63])
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Fig. M2 Spectral fit of simultaneous data from NICER and NuSTAR using a model consist-
ing of thermal accretion-disc emission (slimbh), Comptonised emission (nthComp), ionised
absorber (cloudy), cold absorption (tbabs) and edges accounting for the instrumental fea-
tures. The upper panel shows the spectra, the data residuals from the model (∆χ values)
are shown in the bottom panel.

and cold absorption (tbabs, [64]), accounting for Galactic as well as local
absorption. The CLOUDY absorption table reproduces the absorption lines self
consistently through a slab with a constant density of 1012 cm−3 and a turbu-
lence velocity of 500 km s−1, illuminated by the unabsorbed intrinsic best fit
SED described below. Modelling the absorption lines requires a highly ionised
outflowing plasma, i.e. with ionisation parameter ξ ∼ 105, and with a col-
umn density NHeq ∼ 1024 cm−2. The seed photons for nthComp model are
assumed to be from the multicolour disk black-body emission (inp type param-
eter = 1) and we fixed the temperature to kTbb = 1.47, which resulted from
initial fitting using diskbb.

We further added an empirical edge model to account for the instrumental
features at ≈ 2–3 keV in the NICER spectra and at ≈ 10 keV in the NuSTAR
spectra. The gold M edge in the NICER spectra is a well known instrumental
feature. We fixed the energy of the edge to the value E = 2.4 keV, as reported
by [65] in the analysis of MAXI J1820+070 NICER spectra. The origin of the
≈ 10 keV edge in the NuSTAR spectra is less known, but it was observed in
other sources as well (e.g. the analysis of LMC X-1, [66]). We added a reflection
component, a second Comptonisation component, or a second ionised absorp-
tion to the model, but none of these components improved the overall fit or
the residuals in this part of the NuSTAR spectrum. We, therefore, modelled
it with the empirical edge model. Finally, we accounted for absolute calibra-
tion uncertainties between NICER and NuSTAR instruments allowing for a
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Table M1 Spectral fit results for different fixed values of black hole spin and inclination
with the kerrbb model.

Inclination Spin Mass Accretion rate Fit goodness
i (deg) a Mbh (M�) Mdd (1018 g s−1) χ2 (2935 dof)

70 0.7 9.98+0.06
−0.08 3.9 − 4.3 4693

0.998 29.8+0.02
−0.02 0.99 − 1.09 3585

85 0.7 16.1+0.01
−0.01 8.3 − 8.9 3711

0.998 59.8+0.04
−0.02 1.02 − 1.12 3563

Table M2 Spectral fit parameters to simultaneous NICER and NuSTAR observations
with the slimbh model.

Comp. Parameter (unit) Description Obs 1 Obs 2 Obs 3

TBabs NH (1022 cm−2) H column density 7.92+0.07
−0.02 7.94+0.02

−0.02 7.85+0.02
−0.02

CLOUDY log ξ ionisation 5.13+0.06
−0.04 5.01+0.09

−0.03 4.95+0.07
−0.04

logNHeq H column density 24.03+0.02
−0.02 24.03+0.03

−0.01 24.04+0.03
−0.02

z Redshift −0.0002+0.0001
−0.0002 −0.003+0.001

−0.001 −0.003+0.001
−0.001

slimbh Mbh (M�) Black hole mass 18.0+0.7
−1.2

a Black hole spin 0.71+0.03
−0.14

LEdd Luminosity 0.53+0.03
−0.03 0.51+0.02

−0.02 0.49+0.02
−0.02

i (deg) Inclination 85 f
−1.4

α Viscosity 0.1 (frozen)
Dbh (kpc) Distance 11.5 (frozen)

hd Hardening factor −1 (frozen)
lflag Limb-darkening 0 (frozen)
vflag Self-irradiation 0 (frozen)
norm normalisation 1 (frozen)

nthComp Γ Photon index 2.6+0.2
−0.2 3.6+0.2

−0.2 4.5+0.2
−0.2

kTe (keV) Electron temp. 500 (frozen)
kTbb (keV) Seed photon temp. 1.47 (frozen)

norm (10−2) normalisation 2.6+1.1
−0.7 6.3+1.8

−1.7 13+3
−3

χ2 / dof 3494/2933

Note: The final model also included cross-calibration uncertainties between NICER, NuSTAR
A and B instruments, modelled by mbpo model with ∆Γ = −0.101 ± 0.008 and normalisation
Nmbpo = 1.16± 0.02 (consistent for both NuSTAR A and B instruments), and the instrumental
edges with E = 2.4 keV and maximum τ = 0.074 ± 0.005 for NICER and E = 9.7 ± 0.1 keV and
maximum τ = 0.056± 0.006 for NuSTAR. See the main text for more details.

small discrepancy in the spectral slope and normalisation between the instru-
ments using mbpo model, see [5]. With this model, we obtained the best fits
for black hole spins a & 0.99, inclinations i ≈ 85 deg, and black hole masses
Mbh & 50M� (Table M1, last line) with a χ2/dof = 3563/2937. The mass is
much higher than estimated from previous analysis by [67] (≈ 10M�).

As the black hole mass, spin, inclination, and the distance in the kerrbb
model are degenerate, we fixed the distance of the source to the value Dbh =
11.5 kpc [20]. A smaller Dbh of 4.7 kpc is not excluded and would lead to a
significantly smaller black hole mass and accretion rate, e.g. for spin a = 0.97
and inclination i = 75◦, the best-fit black hole mass is Mbh ≈ 26M� and
Mbh ≈ 12M�, and the effective accretion rate Mdd ≈ 1.8 × 1018 g s−1 and
Mdd ≈ 0.3 × 1018 g s−1 for Dbh = 11.5 kpc and Dbh = 4.7 kpc, respectively.
The best-fit value of the black hole mass is also impacted by the value of spin
and inclination. Table M1 shows the mass and accretion rate results obtained
with kerrbb for a fixed distance Dbh = 11.5 kpc, but for different sets of spin
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and inclination values. The goodness of the fit clearly shows the preference
towards high mass.

In the next step, we replaced the kerrbb by slimbh model [68] that
accounts for a vertical structure of the disc using the code tlusty [69], which
is especially important for higher accretion rate and luminosity L > 0.3LEdd

when conditions for the razor-thin standard accretion disc model are not ful-
filled and a very large hardening factor is required to fit the spectra well
[70]. The best-fit model describes the data with a χ2/dof = 3494/2933, see
Figure M2 and Table M2. To calculate the χ2 values, we used model weight-
ing. The reduced chi-squared value χ2

red = χ2/dof . 1.2 provides a very good
fit, given the fact that we have not applied any systematics to the data that
would account for uncertainties in instrument calibration between NICER and
NuSTAR (that can be within a few percent) as well as possible spectral vari-
ability within the individual exposures since the data acquired by the two
missions were not strictly simultaneous.1 Variable absorption lines are also a
contributing factor to the chi-square in the joint spectral fits of NICER and
NuSTAR. However, as it falls outside the main scope of our study, we did not
delve into investigating this aspect in detail. It is noteworthy that these lines
do not significantly impact the crucial continuum parameters in our analysis.
The fit requires a black hole mass of ∼ 18M� and a black hole spin of a ∼ 0.7,
parameters which are more in line with expectations [67]. The luminosity is
L ≈ 0.5LEdd, i.e. already in the range when the slim disc approximation
is more appropriate than the geometrically thin disc model. The soft X-ray
spectrum is dominated by the thermal accretion disc emission. NuSTAR data
revealed a variable Comptonisation component, which is best visible in a vari-
able tail at very high energies (≈ 15–30 keV). The photon index varies in the
range Γ ≈ 2.8–4.8, while the soft X-ray spectrum varies only little. In the
2–8 keV energy range, the Comptonisation contributes 2 − 3% and is almost
negligible in the soft X-ray band analysis.

Time averaged and time resolved spectro-polarimetric
analysis

Table M3 gives the IXPE polarisation results for the entire IXPE data set. We
investigated the time evolution of the spectral and polarimetric properties in
one-day bins. Here, we characterise the thermal component by its maximum
temperature and its normalization. Therefore we base the spectral analysis
on fitting the 2–10 keV NICER data with the multiple temperature black-
body disc model (ezdiskbb, [71]). We use the same CLOUDY model as in the
main spectral fit to model the absorption lines. We neglect the <2 keV data as
absorption strongly suppresses the low-energy flux. The thermal model gives
a good fit, as the power law component contributes only 2-3% to the 2–10
keV flux. The results of the analysis are shown in Figure M3. Whereas the
maximum disc temperature stayed rather constant around ∼ 1.4 keV, the flux

1While we have restricted the NICER data to be within the NuSTAR observations, we did not
do that vice versa, since the statistics of such restricted NuSTAR data would be too low.
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Table M3 polarisation degree and angle at different energy ranges across the IXPE
energy band.

Energy range (keV) PD (%) PA (◦)

2.0-2.5 6.1 ± 0.7 14.56 ± 3.3
2.5-3.0 6.13 ± 0.4 17.84 ± 1.89
3.0-3.5 7.11 ± 0.32 19.77 ± 1.29
3.5-4.0 7.85 ± 0.34 17.78 ± 1.24
4.0-4.5 8.66 ± 0.37 18.27 ± 1.23
4.5-5.0 7.96 ± 0.46 16.33 ± 1.66
5.0-5.5 10.02 ± 0.53 18.79 ± 1.53
5.5-6.0 10.39 ± 0.68 18.43 ± 1.88
6.0-6.5 10.11 ± 0.82 19.29 ± 2.33
6.5-7.0 12.05 ± 1.15 12.82 ± 2.73
7.0-7.5 9.26 ± 1.58 14.34 ± 4.88
7.5-8.0 11.8 ± 2.45 18.88 ± 5.95

normalisation varied between 35 and 40. The normalisation is given by the
expression f−4 (Rin/D)2 cos i with f being the spectral hardening factor, Rin

the inner radius of the disc in km, D the source distance in 10 kpc, and i the
disc inclination. The polarisation degree shows significant variability. Fitting a
constant model to the IXPE results gives a χ2 of 34.9 for 9 degrees of freedom
(chance probability 6×10−5).

Theoretical modelling of the spectro-polarimetric results

Analytical results

The observed high X-ray polarisation of 4U 1630–47 in the 2–8 keV energy
band can be achieved if the system is viewed at a high inclination angle.
The classical results of the pure electron-scattering, semi-infinite atmospheres
[72, 73] show that the observed polarisation degree can be achieved for binary
inclinations & 85◦, see Figure M4.

At such high inclinations the X-ray source becomes obscured by the outer
parts of the accretion disc, for which an opening angle ∼ 12◦ has been observed
[74]. Furthermore, for the source at inclination > 80◦ complete eclipses are
expected, but they have not been detected in this source.

However, as we note in the main text, the basic assumption of this model,
namely, the complete ionisation of matter in the accretion disc atmosphere, is
hard to achieve. For a fractional ionisation, absorption effects may significantly
enhance the polarisation degree of escaping spectra [75, 76]. The parameter
governing the polarisation degree is the ratio of scattering coefficient to the
sum of scattering and true absorption coefficients, λ. Smaller values of λ tend
to give higher polarisation degree. The presence of internal sources distributed
within the disc atmosphere decreases the polarisation degree as compared to
the classical Milne problem [77], where all the photons originate from the
bottom of the atmosphere (at infinite optical depth) [78]. Nevertheless, the
net polarisation degree in these cases can be higher than that in the pure
electron-scattering atmosphere case (Figure M4), hence the lower limit on the
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Fig. M3 The temporal variability of disc spectral parameters derived from NICER and
polarimetric parameters derived from IXPE observations. Top: The inner disc temperature
(kTbb) in red and the disc normalisation in blue. Bottom: polarisation degree (Π) in red
and polarisation angle (Ψ) in blue. There is no evident correlation of the variability between
both. The error bars are shown at 68% confidence levels.

inclination of the system, required by the high polarisation degree, becomes
compatible with the maximum inclination expected for the X-ray binaries
imax ∼ 78◦ [74]. Whereas the scattering in a completely ionised atmosphere
leads to achromatic polarisation degree, absorption processes can lead to its
energy dependence [38].

Results from radiative transfer calculations in the
approximation of a plane parallel disc atmosphere embedded
in flat space-time

In the following we consider the effects of partial ionisation of different atomic
species on the polarisation properties using the passive slab of cold matter on
top of the unpolarised black-body emission region. This scenario resembles the
Milne problem, but the ionisation structure of the medium is pre-computed,
rather than parameterised. The radiative transfer calculations account for
scattering and absorption effects.

The first model follows the approach discussed by [38, 39]. The calculations
use TITAN [79] and CLOUDY [63] codes to derive one-dimensional vertical ion-
isation profiles for various photo-ionisation equilibrium (PIE) and collisional
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Fig. M4 Polarisation degree as a function of inclination for the pure electron-scattering
atmosphere (black dotted), as compared to the case of partial ionisation of matter (absorp-
tion effects) and distributed sources (red solid line). The green dashed line indicates the
average polarisation in the IXPE band and blue dot-dashed line gives the polarisation at
about 2 keV.

ionisation equilibrium (CIE) regimes. All of these calculations assume a con-
stant density throughout the atmosphere. As the ionisation profiles from both
codes agree with each other, we limit the following discussion to the results
obtained with the TITAN code. The ionisation profile is subsequently used as
input for the 3D Monte Carlo code STOKES [80–83], which accounts for line
and continuum processes, as well as for multiple scatterings and absorption.

We find that the energy dependent polarisation degree of the emergent
emission is governed by the ionisation profiles and depends only weakly on the
physical conditions that led to these ionisation profiles. The slab ionisation
depends in turn on the density and either on the incident ionisation parame-
ter (in PIE) or on the slab temperature (in CIE). We find that highly ionised
slabs can give high polarisation degrees increasing with energy. High ionisation
degrees agree with the absence of strong absorption features in the observed
energy spectra. Once a sufficiently high ionisation fraction is reached, the
polarisation degree saturates and does not change due to a further increase of
ionisation for a given slab optical depth, observer’s inclination and temperature
of the irradiating black-body (if PIE is assumed). Such highly ionised states
of the slab are difficult to reach through CIE without any external irradiation,
unless extremely high slab temperatures are assumed (& 109 K). However,
such temperatures correspond to an inverted temperature profile, with the
atmosphere being hotter than the emitting black-body – an unlikely outcome
for the optically thick disc atmospheres of X-ray binaries in thermal state
[84, 85]. Note that high ionisation represents the most natural state for slabs
with hydrogen density n(H) . 1020 cm−3 in PIE, illuminated by black-body
radiation at the observed mean X-ray temperatures. Changing the slab den-
sity across orders of magnitudes from n(H) = 1012 cm−3 to n(H) = 1020 cm−3
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does not impact the conclusions. Therefore, the PIE calculations do not con-
strain the radial dependence of the atmospheric densities. Furthermore, the
PIE results are rather insensitive to the ionisation parameter, as long as the
slab is highly ionised.

We tested in PIE that the vertical stratification of the atmosphere in up
to 50 plane-parallel layers gives the same results as a single layer, as long as
the medium is highly ionised. We thus use only one vertically-averaged layer
for the following results. We neglect Compton up-scattering, since it would be
effective for higher slab temperatures than those considered in our modelling
and the effects would be visible at too high energies compared with the IXPE
band. On the other hand, multiple Compton down-scatterings are included and
this process is important in the genesis of polarisation within the IXPE band.
It was proven that using this approach in the pure-scattering limit we reach
the values given by Chandrasekhar’s formulae for sufficiently optically thick
slabs [38]. We adopted the typical solar abundance from [86] with AFe = 1.0,
which is important for the energy-dependent contribution of ionisation edges.

Figure M5 shows the variation of the emergent polarisation degree, plotted
as function of energy, with the slab optical depth τ , the observer’s inclination
and the temperature kTBB of the illuminating black-body in PIE for a highly
ionised slab (in a wide energy range). The optical depth is changed only by
changing the height of the layer, while the density and the ionisation structure
remain constant. In this respect, increasing optical depth and inclination show
similar effects, both enhancing the polarisation degree, as the photons are on
average reaching the observer through larger portions of the slab. Additional
calculations show that vertically stratified atmospheres with BB temperatures
down to kTBB = 0.5 keV, constant densities up to n(H) = 1020 cm−3 and
optical thickness τ . 10 give approximately the same net 2-8 keV polarisation
degrees as the simplified approach. The above described model breaks for larger
values of optical thickness, since i) the required level of ionisation on the distant
(not illuminated) side of the passive slab in PIE is no longer reached, and ii)
the assumption of a passive slab is not valid due to the lack of internal sources
of X-ray radiation inside the slab. The change of emergent polarisation due to
the addition of internal sources is assessed in the next section.

The trend of the polarisation degree with energy shown on Figure M5 can
be explained in the following way. From a wider X-ray energy perspective,
the cross section for photoelectric absorption declines as ∼ E−3, while scat-
tering remains roughly constant until ≈ 50 keV and should dominate over
absorption already above ≈ 0.2 keV. However, in the IXPE band this gen-
eral trend is reversed; in fact, around 2 keV the photoelectric absorption is
insignificant, in accordance with the general trend due to the lack of ionisa-
tion edges, while at higher IXPE energies the polarisation properties are still
strongly affected by absorption (depending on the BB temperature), mostly
due to the highly-ionised iron edge. Thus, we are closer to the pure-scattering
limit at 2 keV rather than at higher IXPE energies. We refer the reader to the
detailed study of [84] (figures 1 and 4), which estimates the energy dependent
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Fig. M5 Polarisation degree vs. energy from the TITAN and STOKES codes for a highly ionised
slab (n(H) = 1018 cm−3 and a standard black-body normalisation of the flux at the bottom
of the slab). The observer’s inclination and optical depth of the slab scale the polarisation
degree according to energy dependent contribution of both absorption and scattering. The
X-ray black-body temperature of the incident radiation sets weights on different energies.
The Chandrasekhar’s scattering limit is reached for τ ≥ 3 at E ≤ 2 keV for all significantly
contributing single-color black-bodies. The obtained polarisation angle is in all studied cases
constant with energy and oriented to be parallel with the slab.

contributions of various processes to the total opacity in the photospheres of
BHXRB discs. This is supported by the energy profile of the effective optical
depth τeff ≡

√
3τabs(τabs + τes) [87], where τabs is the total (sum of bound-free

and free-free) absorption optical depth and τes is the electron scattering opti-
cal depth, which can be obtained from the TITAN code and which is shown on
Figure M6 for our slab computations. The strong ionisation edge seen in the
opacities at 9 keV leads to a peak at the same energy in the polarisation degree
shown in Figure M5 (and below in Figure M8, using a different model). The
absorption effects in polarisation arising from energy dependent opacities are
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Fig. M6 The effective optical depth vs. energy given by the TITAN code for two different
irradiating X-ray black-body temperatures from the cases on Figure M5.

further blurred by the energy distribution of the underlying black-body and
Compton scattering re-distribution of photons. Our Monte Carlo calculations
with STOKES predict that absorption has little or no impact on the polarisation
degree between 0.2 and 2 keV for τ . 10, where a plateau in polarisation degree
is formed according to the pure-scattering contribution constant with energy.
At 2 keV we thus recover Chandrasekhar’s result for a pure electron-scattering
atmosphere at τ & 3 (see Figs. M8 and M9 for the same conclusion at the most
significantly contributing disc radii, using a different model assuming a semi-
infinite atmosphere and a hydrostatic equilibrium). Thus, the observed 6%
polarisation degree at 2 keV robustly constrains the inclination of the emitting
patches to be equal or exceed 80◦ (Figure M4). At the photo-absorption peak
around 10 keV, the model allows to raise the emergent polarisation degree.
Absorption effects can thus indeed produce a polarisation degree increasing
over the IXPE energy band, in accordance with the analytical predictions.

Figure M7 shows a fit of the output from these radiative transfer calcula-
tions to the IXPE data, approximating the accretion disc by a plane parallel
slab in flat space. The fitting parameters are the optical depth τ and the
inclination i. The best fits are achieved for optically thick slabs (τ ≈ 5) and
high inclinations (i ≈ 84◦), depending on the single-color BB temperature
of the incident radiation. As relativistic effects tend to lower the polarisation
degrees, even higher local optical depths and/or inclinations are needed in case
of relativistic accretion discs.

Modelling the effects of the impact of radial variations of the
properties of the disc photosphere, and relativistic effects

In the next step, we calculate the polarisation of the emission from accretion
discs with realistic radially structured disc atmospheres accounting for rela-
tivistic effects [88, 89]. In these calculations, the radial disc structure follows
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Fig. M7 Best-fit local atmosphere solutions of PD vs. energy (left) and 2D contours of
1σ, 2σ, 3σ levels around their value in i and τ space (right) obtained with XSPEC by fitting
the energy-dependent data with smoothed TITAN and STOKES models for kTBB = 0.5 keV,
kTBB = 0.8 keV, kTBB = 1.15 keV, kTBB = 1.4 keV.

from the conservation laws for mass, angular momentum and energy in accor-
dance with the standard Shakura-Sunyaev α-disc model [9] and the relativistic
corrections of [10, 90]. The disc model was divided into a number of rings and
the vertical structure of each ring was calculated in the grey approximation
using the model atmosphere [91] approach. The model input parameters were
taken from the disc parameters at a given radius: effective temperature, half-
thickness, and surface density. The ring was assumed to be in hydrostatic and
radiative equilibrium. It is also assumed that the local vertical energy release
rate is proportional to the local pressure. Then we solve the radiation trans-
fer equation in 0.1 - 20 keV photon energy band in five hundred frequency
points using the grey ring model. We use the two-mode approximation, with
electron scattering being the only source of polarisation, see details in [92]. We
assume no illumination from the top of the atmosphere and a (mirror) reflec-
tion boundary condition in the mid-plane of the disc. The plasma equation of
state is used assuming local thermodynamic equilibrium. We account for the
15 most abundant chemical elements assuming the solar chemical composition
[93]. The ionisation state of the elements and the excited level populations were
computed using the Saha-Boltzmann equations including pressure ionisation
effects [94]. The absorption opacities were calculated accounting for bound-
free and free-free transitions of all the elements. In Figure M8, we present the
locally emitted energy spectra for two exemplary rings and five inclinations
for MBH = 10M�, L = 0.5LEdd and a = 0. As expected, the polarisation
degree exhibits a maximum where the absorption opacity becomes comparable
to Thomson scattering.

Exemplary results of the integrated disc spectra are shown in Figure M9.
The results are shown before and after accounting for relativistic effects. The
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Fig. M8 Spectra of two rings of the considered disc model (see text) in two modes (a),
and PD for the same rings (b) and (c). The results in panels (b) and (c) are shown for five
angles to the local normal; the cosines of the corresponding angles are shown in the panels.

detailed modelling confirms the results from the simpler models: the polarisa-
tion predicted by the standard thin disc model is lower than the observed one.
In the next section, we are going to investigate what other effects can help to
increase local polarisation degree and compare our models with the observed
data.

Comparison of our models with the data

From previous sections it is clear that even if the local polarisation of ther-
mal radiation can be indeed larger than the one estimated by Chandrasekhar
approximation [73] if one accounts for the absorption effects, the overall polari-
sation seen by a distant observer is still too low since the emission is integrated
over all disc where relativistic effects – energy shift, light bending, aberration
and rotation of polarisation vector along light rays – change the polarisation
properties. In this section we would like to compare our model predictions
with the observed data in more detail and discuss possible solutions that in
principle could still further increase the predicted polarisation degree.

Since the system properties, its inclination and distance, the BH mass and
spin, are not measured for this object but rather estimated indirectly, we study
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Fig. M9 Spectra, PD and PA from a self-consistent model of the disc atmosphere in radial
bins. Dotted lines correspond to quantities in the local reference frame and solid lines corre-
spond to those modified by the relativistic effects, as seen by distant observers. The results
are shown for three disc inclinations: i = 60◦ (black), 75◦ (blue) and 85◦ (red).

the polarisation properties of our models assuming several values of rather
high inclination and several values of BH spin. The rest of the parameters that
change the spectral shape are then fitted from the observed spectrum. Only
then we fit the polarisation properties using the observed energy dependence of
the polarisation degree and angle to investigate if our model can explain these
and whether it can give us any constraints on the spin and/or inclination.
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Table M4 The comparison of spectral fit results for different fixed values of system
inclination and black hole spin with kynbbrr model representing the thermal spectral
component. If not noted otherwise, a source distance of 11.5 kpc is assumed that
corresponds to the normalisation of 0.76. In case the fitted BH mass hit the lower limit of
3M�, we assumed distance of 4.5 kpc corresponding to the model normalisation of 0.49. In
case that the fitted BH mass hit the lower limit of 3M� again, we assumed black hole
mass to be 3M� and fitted the normalisation which corresponds to norm = 1/D2

10 with
D10 being the distance to the source in 10 kpc. The fitted values of tbabs and cloudy
parameters were close to the values shown in Table M2.

Incl. Spin Mass Accretion rate Normalization Fit goodness

i (deg) a Mbh (M�) Ṁ/ṀEdd norm χ2 (792 dof)

70 0 3 (frozen) 0.451 ± 0.003 2.13 ± 0.02 (a) 730
0.998 23.59 ± 0.10 0.1221 ± 0.0003 0.75614 (frozen) 638

75 0 3 (frozen) 0.424 ± 0.003 3.02 ± 0.03 (b) 719
0.5 3.59 ± 0.02 0.1992 ± 0.0005 4.93827 (frozen) 732
0.7 3.80 ± 0.02 0.1759 ± 0.0005 4.93827 (frozen) 719
0.9 15.57 ± 0.07 0.2402 ± 0.0006 0.75614 (frozen) 670

0.998 29.5 ± 0.1 0.1005 ± 0.0002 0.75614 (frozen) 632
85 0 3 (frozen) 0.6336 ± 0.0005 4.93827 (frozen) 728

0.998 48.7 ± 0.2 0.0724 ± 0.0002 0.75614 (frozen) 629

(a)corresponding to the distance of 6.85 kpc
(b)corresponding to the distance of 5.75 kpc

For our spectral fit we use only the NICER data set since only the NICER
observation covers the IXPE one well enough throughout the whole observa-
tion. We take NICER data corresponding to IXPE observing period and sum
them together using addspec tool from the HEASOFT package [55]. The NuS-
TAR data cover only a small fraction of IXPE observation thus we just use it
to estimate the contribution of non-thermal component to the total observed
flux. Since the spectra observed by NICER are much better calibrated, espe-
cially for high flux sources, compared to the spectra observed by IXPE, we use
only the polarisation data from IXPE.

From the three NuSTAR observations we see that the non-thermal com-
ponent is highly variable and contributing only by few percent in the
2–8 keV energy band. Therefore in the following analysis we use only an
absorbed thermal component. To fit the NICER spectra, we use the model
edge×tbabs×cloudy(kynbbrr). Here, we use the Novikov-Thorne geomet-
rically thin disc model kynbbrr [35, 38, 95] instead of and similar to kerrbb
model for the thermal component since this model allows us to study also
the polarisation properties of this component in different scenarios. The other
model components are the same as already described in the spectral analysis
section. We emphasise that in the current analysis we use the summed NICER
data, i.e. not only the data correspondent to NuSTAR observations, we exclude
non-thermal component and we fit for several assumed values of inclinations
and BH spins, contrary to what we have done in the spectral analysis section.
In the current spectral analysis we use 1% systematic error for the NICER
data. Note that the spectral fit does not require the Comptonised component
at these energies confirming that its average contribution is very low in the
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Fig. M10 Example of the best fit model to the NICER data (top), ratio of data to the fitted
model (middle) and the data residuals from the model (bottom) for the case with assumed
inclination θ = 75◦ and BH spin a = 0.5. Other studied cases give fits of similar quality.

full IXPE observation. The best spectral fits are summarised in the Table M4
and one example fit (inclination θ = 75◦ and BH spin a = 0.5) is shown on
Figure M10.
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Fig. M11 Attempted fits of observed polarisation degree with the models (B) (left) and (C)
(right). See the text for details. We did not account for self-irradiation in these computations.

In the next step we freeze all the parameters influencing the spectral shape
and try to fit the polarisation degree and angle observed by IXPE and reduced
as described in the data reduction section. To this purpose, we have developed
different flavours of the kynbbrr polarisation model that originally assumed
Chandrasekhar approximation of pure scattering atmosphere for direct radi-
ation and Chandrasekhar multi-scattering approximation for polarisation of
reflected disc self-irradiation with an assumed albedo of 0.5. We denote this
original model as model (A). The orientation of the system on the sky of the
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Table M5 Comparison of goodness of polarisation degree and angle fits using different
flavours of the kynbbrr model. Note that both the PD and PA was binned in 11 energy
bins. The fits with χ2

tot < 22 are denoted in bold and the best fit parameter values of these
cases are shown in Table M6.

Incl. Spin model (A) model (B) model (C) model (D)

i (deg) a χ2(PD/PA/tot) χ2(PD/PA/tot) χ2(PD/PA/tot) χ2(PD/PA/tot)

70 0 1573/8.9/1581 33/8.0/40 626/7.7/634 11.5/7.9/19.4
0.998 2236/280/2517 84/80/164 1551/66/1617 12.2/57/69

75 0 1132/7.8/1140 35/7.8/43 387/7.7/395 11.8/7.8/19.6
0.5 1529/13/1542 37/8.8/45 506/8.3/514 12.2/8.3/20.5
0.7 1722/21/1743 37/10/47 606/9.8/616 12.5/9.3/21.8
0.9 2077/53/2130 41/15/56 828/15/843 12.7/12.9/25.7

0.998 2162/258/2420 65/56/121 1309/48/1357 12.1/41/53
85 0 658/7.8/666 55/7.7/63 42/7.9/50 13.3/7.9/21.2

0.998 2098/187/2285 30/21/51 765/21/786 12.9/18.6/31.54

Table M6 The best fit parameters of the kynbbrr model (D) with outflowing ionised
layer. Since the optical thickness of the layer and its outflow speed were degenerate, we
eventually kept optical thickness to be frozen to τ = 7. We characterise the outflow speed
by its value at the radius where the disc temperature peaks, β(Tmax), see the last column.

Incl. Spin orientation speed norm speed index speed

i (deg) a χo β0 q β(Tmax)

70 0 −70.7 ± 0.5 0.65 ± 0.14 0.54 ± 0.19 0.50
75 0 −71.2 ± 0.5 0.56 ± 0.18 0.72 ± 0.29 0.40

0.5 −70.1 ± 0.5 0.65 ± 0.18 0.73 ± 0.26 0.47
0.7 −68.9 ± 0.5 0.71 ± 0.17 0.70 ± 0.23 0.53

85 0 −72.5 ± 0.5 0.6 (frozen) 2.1 ± 0.2 0.22

observer is the only free parameter of this model to fit the observed polarisation
properties. It defines the direction of the system rotation axis. As mentioned
in the previous section, the predicted polarisation degree of this model is too
low, see the left panel on Figure 2 and Table M5. To increase the local polar-
isation degree in this model, one would have to assume larger emission angle
in local reference frame co-moving with the accretion disc. This could happen
in case of an outflow with relativistic speeds in the vertical direction, i.e. per-
pendicular to the disc. Due to relativistic aberration effect, the photons would
then need to be emitted with higher emission angles to reach the same observer
at a given inclination angle. Thus in the second flavour of this polarisation
model, denoted as (B), we assume decreasing radial profile of the vertical out-
flow velocity, i.e. β(r) = β0 r

−q with β being the speed in units of speed of
light in the vacuum. This model then has two new parameters, β0 and q, that
influence the predicted polarisation properties. This model still does not fit the
observed polarisation very well, see the left panel on Figure M11 and Table M5.
While the model reaches high values of polarisation degree it fails to fit its
increase with energy. The third flavour of the polarisation model, denoted here
as (C), uses the local polarisation degree defined by the local model from pre-
vious sections (the one for an ionized passive slab with finite optical depth
and constant density computed with the TITAN and STOKES codes). The local
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Fig. M12 Polarisation angle predicted by the model (A). Note, however, that the PA
energy dependence predicted with different flavours of the kynbbrr model is very similar
due to the fact that the local polarisation angle is always assumed to be parallel with the
disc. The predicted PA is thus dependent mainly on the relativistic effects. The PA for both
anticlock-wise (left) and clock-wise (right) direction of the system rotation are shown (the
disc and black hole are co-rotating in both cases).

polarisation degree in this model depends on the disc temperature (given by
the Novikov-Thorne temperature profile), emission angle (computed by ray-
tracing in the curved space-time for a given observer inclination) and optical
thickness of this layer. The last parameter is then a new parameter that influ-
ences the predicted polarisation properties of this model. As mentioned in the
previous sections, this model also does not fit the observed polarisation prop-
erties, see the right panel on Figure M11 and Table M5. Although the increase
of polarisation degree with energy is corresponding to the observed increase,
the magnitude of the polarisation degree is too low. To increase the predicted
polarisation degree of this model, we increase the local polarisation degree by
assuming vertical outflow velocity that causes higher local emission angle due
to aberration effect as in model (B). We denote this model as model (D). The
top right panel on Figure 2 and Table M5 shows that this model can fit the
observed data quite well except for highly spinning black holes that do not fit
the observed polarisation angle, see Figure M12. Acceptable fits are denoted
by bold-face in Table M5 and the best fit parameters are shown in Table M6.
Note that to achieve the observed polarisation degree the scattering layer has
to be outflowing with approximately half of light speed.

Up to now we have investigated possibilities how to increase the polari-
sation degree in our model of thermal emission that is seen directly by the
observer. Another way how to increase the total polarisation degree of the
thermal component would be by increasing the contribution of polarised flux
due to reflection of the disc self-irradiation. This flux is already quite highly
polarised thus the reflected flux itself would have to be increased. Since this
is dependent on the amount of self-irradiation, this can be larger only if we
change the disc geometry, specifically if the disc scale height will be substan-
tially larger than in the geometrically thin accretion disc, where it is usually
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Fig. M13 The polarisation degree (left) and polarisation angle energy dependence for
anticlock-wise (top right) and clock-wise (bottom right) direction of the system rotation for
geometrically thin disc with the contribution of the reflected self-irradiation increased by
allowing the albedo to be larger than 1.

assumed that, h/r � 1 for the scale height h of the disc at radius r. This possi-
bility is investigated in more detail in the next section. For a rough estimate of
how much the self-irradiation would need to be increased, we can use the geo-
metrically thin disc scenario where the albedo will be allowed to be larger than
one. The results of this experiment is shown on Figure M13. While the exact
shape of the model predicted polarisation degree and angle and thus also the
dependence of the fit statistics on model parameters should be taken with care,
since the model is not self-consistent any more, we can still discuss the value
of the albedo and its interpretation with respect to amount of self-irradiation.
The albedo is the lowest for the highest studied spin value and increases for
lower spin values while it depends much less on the inclination. This is due to
the fact that the amount of self-irradiation is already much larger in case of
the disc reaching closer to the black hole horizon for highly spinning BH thus
smaller multiplicative factor (albedo) is needed to reach the needed increase
in polarised reflected flux. On the other hand the amount of the reflected self-
irradiation depends much less on the inclination. For the inclination of 75◦,
the fitted albedo value was 4.5, 11.4, 17.1, 22.2 and 36.2 for the spin values
of 0.998, 0.9, 0.7, 0.5 and 0, respectively. Thus for highly ionised discs, where
the physical value of the albedo is expected to be between 0.5 and 1, we would
need the self-irradiated flux to increase by a factor of 5 to 10 in case of very
highly spinning BH.
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Polarisation of the emission from slim and thick accretion
discs

Fig. M14 Total flux for ray-traced simulations of 0.98 spin black holes with h/r = 0.5
viewed at a 75◦ inclination (left) and h/r = 0.3 viewed at an 85◦ inclination (right). The
colour scale shows the flux on a logarithmic scale in arbitrary units. Overlaid, the black
vectors indicate the PA and have a length proportional to the PD – both as seen by a distant
observer.

We also explored if the polarisation of X-rays from phenomenological thick
disc models [96] could explain the IXPE data. The models assume discs of vari-
ous scale heights embedded in the Kerr space-time. The disc matter is assumed
to orbit the black hole on general relativistic Keplerian orbits. Following the
classical treatment of [97], it is assumed that the disc material locally emits
all the net energy that it gains by sinking towards the black hole. Given the
energy liberated in each radial bin per co-moving time, the temperature of the
disc surface is calculated from the Stefan-Boltzmann law accounting for the
fact that a thicker disc has a larger surface area than a geometrically thin disc.
It is furthermore assumed that the disc emits locally a modified black-body
energy spectrum adopting a constant spectral hardening factor of 1.8. The
surface of the disc follows a simple phenomenological description inspired by
the Polish doughnut models by [13]. The discs are characterised by the scale
height, h/r with h being the height of the disc where the disc is thickest, and
r being the corresponding disc radius.

Figure M14 shows the 2-D distribution of the surface brightness, PD, and
PA, as a distant observer would see them. Both models show the effect of
the colder and X-ray dimmer outer portions of the slim discs shadowing the
emission from the hot and bright inner regions. Figure M15 shows the PD and
PA energy spectra for discs scale heights ranging between 0 and 0.9. The PDs
always increase with energy, as the highest-energy emission from the innermost
portion of the disc are most likely to scatter off the opposite side of the disc.
The PAs stay roughly constant with energy.
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Fig. M15 Polarisation degrees (top) and angles (bottom) for thin, slim, and thick discs
of 0.98 spin viewed at i = 85◦, assuming a highly-ionised disc photosphere. The model
predictions are marked by solid lines of different colours, while IXPE data are reported as
a blue line in both panels. The shaded cyan region represents the errors at 68% confidence
level. Note that while the PA is unknown still its behaviour with energy is constrained to
be consistent with a constant. Almost all our studied slim and thick geometries fullfil this
except those with very low scaleheight and high BH spin.

The figure shows that increasing scale heights lead to overall higher
PDs. We could, however, not find a parameter combination that achieves
polarisation degrees as high as the observed ones.

Figure M16 shows that the PDs increase with inclination and with the
black hole spin. The dependence of the PD on inclination results from the
combined effects of different inclinations of the emission reaching the observer,
and different degrees of self-shadowing of the emission by thick discs. Increasing
black hole spins lead to higher PDs as higher spins correspond to the discs
extending closer to the black holes, and leading to a higher fractions of photons
reflecting off the discs.
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